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Abstract The time-discretization process of transient equation systems is an important concern
in computational heat transfer applications. As such, the present paper describes a formal basis
towards providing the theoretical concepts, evolution and development, and characterization of a
wide class of time discretized operators for transient heat transfer computations. Therein,
emanating from a common family tree and explained via a generalized time weighted philosophy,
the paper addresses the development and evolution of time integral operators [IO], and leading to
integration operators [InO] in time encompassing single-step integration operators [SSInO],
multi-step integration operators [MSInO], and a class of finite element in time integration
operators [FETInO] including the relationships and the resulting consequences. Also depicted are
those termed as discrete numerically assigned [DNA] algorithmic markers essentially comprising
of both: the weighted time fields, and the corresponding conditions imposed upon the dependent
variable approximation, to uniquely characterize a wide class of transient algorithms. Thereby,
providing a plausible standardized formal ideology when referring to and/or relating time
discretized operators applicable to transient heat transfer computations.

Introduction
The development of computational algorithms for parabolic transient systems
of equations have matured over the years. Analytical approaches, although
indispensable are not economically feasible and/or impractical for complex
linear/nonlinear situations. This is especially true for large scale engineering
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computations and thus provides the impetus and the need for developing
effective computational algorithms for transient analysis. After the semi-
discretization of transient field problems which in the case of linear problems
leads to a set of ordinary differential equations in time, there exist many
numerical approximation methods which have been introduced for the time
discretization and the solution of these classes of problems. These include finite
difference approximations for the time derivatives which lead to the so called
direct time integration relevant one-step and multi-step methods, attempts
towards providing unified formulations via a weighted residual approach, and
alternate viewpoints and insights describing the underlying theoretical basis
for characterizing time discretization operators via a generalized time weighted
philosophy (see Belytschko and Hughes (1983); Wood (1987, 1990); Zienkiewicz
and Taylor (1994), and Tamma et al. (1997)); mode superposition type methods
(Bathe, 1982); finite element formulations in space and time (Oden, 1969; Fried,
1969; Argyris and Scharpf, 1969); alternate approaches employing variational
principles in time which also lead to similar forms of algorithms as in the
weighted residual approach (Washizu, 1975; Gurtin, 1964); hybrid formulations
which employ transform methods (Laplace/ Fourier) in conjunction with the
standard Galerkin procedures and space finite elements and then numerically
invert the resulting representations to obtain the solutions at desired times of
interest (Manolis and Beskos, 1980; Tamma and Railkar, 1987a, 1987b); and the
like.

Of the various computational algorithms available in the literature for
transient field problems, the so called direct time integration approaches have
been consistently popular and most common in production codes. In other
related efforts, recent advances in the theoretical development of transient
algorithms encompassing modal based time integral operators, time
integration operators and the like including a plausible theory of development/
evolution of computational algorithms are described by Tamma et al. (1997).
Also touched upon are the theoretical developments towards bridging the
relationships between those termed as integral and integration time operators
(details are described subsequently) via a generalized time weighted
philosophy with a clear insight and specific knowledge of the weighted time
fields (not specifically known previously) which now permits for the first time a
basis for providing the underlying distinction between integral and integration
operators in time. An overview of the general developments for parabolic and
hyperbolic-parabolic transient systems is recently described in Tamma et al.
(1997).

Specifically focusing attention on the various approaches outlined above, the
following general consensus and inferences can be briefly drawn. Direct time-
integration methods for transient field problems have long been a subject
matter of widespread research activity. To date, much progress has been made
in the development and understanding of the direct time-integration methods.
This includes the development of alternate theoretical formulations which are
different from the original methods of algorithmic development, thereby
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leading to efficient algorithmic representations and interpretations, attempts
towards unified formulations, investigations encompassing accuracy and
stability properties, formulations of variable and mixed time integration
approaches, adaptive time stepping approaches, implementation aspects and
the like. These direct time integration algorithms are generally categorized as
explicit methods and implicit methods, and are subsequently addressed.
Whereas for linear situations, long time durations, and inertial type problems,
traditional mode superposition type approaches and practices are attractive,
thus far, they have not been as popular as direct time-integration techniques for
non-linear situations (because of cited reasons in the literature which indicate
the need to frequently compute the associated eigen problems repeatedly to
satisfy local mode superposition). However, there is a general consensus that
modal analysis is felt to be more efficient if many analyses of the same
configuration are necessary, for long time durations, and/or if only a small
number of modes dominate the solution. On the other hand, direct time
integration techniques continue to be popular in commercial codes.

To address some of the disadvantages of direct time-stepping approaches
such as the widely advocated �-family of methods, and to overcome some of
the deficiencies and the practical inability of traditional modal analysis
methods for general transient nonlinear situations, Tamma et al. (1994, 1995),
Mei et al. (1994) and Chen et al. (1993) have described via a generalized time
weighted philosophy the theoretical basis for formulating the exact solution
and consequences leading to an explicit, unconditionally stable VIrtual-Pulse
(VIP) time integral method of computation. Although the methodology
emanates via a time weighted philosophy, it is based on new and different
perspectives in an attempt to capitalize not only on the advantages of both, but
also towards providing a fundamentally sound theoretical basis and avenues
for describing time integral operators. Therein, the fundamental developments
towards establishing the theoretical basis for subsequent applications to linear
and a class of nonlinear transient heat transfer analysis influenced by
conduction, convection, and radiation heat transfer mechanisms are described
and the pros and cons of such approaches for practical problems are identified.
Via the time integral methodology, after the so-called semi-discretization
process, the time discretization is achieved via a virtual or weighted time field
with the time weighting fields proposed being uniquely selected so to account
for the physics of the problem; thereby, resulting in an explicit time integral
methodology whose integral operator naturally inherits certain
computationally attractive features and good stability/accuracy attributes. The
pros and cons of such time integral operators, however, need to be understood
by the analyst and have been described.

Formulations employing finite elements in space and time have indeed
received some attention since the pioneering efforts in 1969. However, although
effective for a class of situations, they continue to face certain difficulties as
related to the size of the resulting formulations, storage, and the like in
comparison to traditional direct time stepping formulations. There also exist
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other relevant, more recent computational algorithms and approaches to
effectively tackle transient field problems. The appropriate technique depends
heavily on the problem under consideration.

Of particular interest in this paper are the class of transient field problems,
which, as a result of the semi-discretization process (in a finite element sense),
yield the following simultaneous ordinary differential equations which can be
represented in matrix form for linear problems as:

C
_~T �K~T � ~F �1�

with the initial condition

~T 0� � � ~T0 �2�
Furthermore, in many practical engineering situations, nonlinearities exist thus
altering the above equations to imply,

C � C ~T
� �

;K~T � P ~T
� �

;~F � ~F ~T
� �

where C is the capacitance matrix, K is the conductance matrix which is
comprised of the effects due to conduction, convection and radiation, and ~F is
the corresponding load vector which also includes internal heat generation. The
primary motivation and objectives of this paper follow next. Currently, there
exist the original methods of development of various computational algorithms
in the literature and other previous efforts such as the weighted residual
approach and the like describing alternate formulations which include these
original developments and have indeed provided certain useful generalizations.
However, these previous efforts fail to enact a mathematically consistent
formulation in developing these generalizations. Thus, leading to not only a
clear lack of recognition of the underlying theoretical relevance and insight and
burden carried by the weighted time fields and the corresponding conditions
imposed upon the associated dependent field variable approximations in the
course of the subsequent developments, but also hampering the systematic
bridging of the relationships amongst time discretized operators encompassing
those termed as integral and integration operators in time including their
characterization. This is the primary focus of the present manuscript. Unlike
past efforts for the development of computational algorithms for transient
analysis, the theoretical basis and framework of the present developments,
although they emanate from a virtual field or a weighted time field introduced
for enacting the time discretization, we herein seek to first formulate in a
mathematically consistent manner an equivalent representation containing the
adjoint operator associated with the original transient semi-discretized
equation system. This equivalent representation forms the theoretical
backbone and is formulated via a consistent integration by parts (once, twice,
etc., based on the order of the time derivatives appearing in the semi-discretized
system) and is first capitalized upon instead of directly dealing with the
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original time weighted semi-discretized equation system. Consequently, it
therein serves as a prelude towards a clear understanding and an improved
insight and provides a basis towards a formal theory of development, evolution
and characterization of time discretized operators within a general framework
including bridging of the relationships for both integral/integration time
operators. Subsequently, the selection or the burden carried by the virtual or
weighted time field originally introduced for enacting the time discretization
process determines the formal outcome of ``exact integral operators'',
``approximate integral operators'', and a wide class of ``integration operators''
including identifying the underlying basis for the conditions imposed on the
selection of the corresponding dependent field variable approximations. The
``burden of weight'', so phrased due to the presence and role of the virtual or
weighted time field introduced for enacting the time discretization, and the
underlying conditions imposed upon the corresponding approximation of the
dependent field variable, both play a fundamental part in subsequently
enabling a formal basis for characterization of computational algorithms via
discrete numerically assigned [DNA] algorithmic markers which are associated
with both the above.

The paper is arranged as follows. The theoretical basis and evolution and
classification of time discretized operators starting from the formal
development of time integral operators and the resulting consequences
systematically leading to time integration operators is first established.
Subsequently, the characterization of computational algorithms via discrete
numerically assigned [DNA] algorithmic markers for a generalized family of
integral/integration operators is described. That which is pertinent to
characterization are the so called DNA algorithmic markers which comprise of
both the weighted time fields and the corresponding imposed conditions on the
dependent field variable approximation. These issues are particularly
addressed. A wide class of known and established methods are then shown to
be subsets of the family of single-step integration operators [SSInO] which can
be uniquely characterized. Next, the development of multi-step integration
operators [MSInO] from the development of these single-step time operators is
described and the relevant issues and equivalence are fundamentally explained
and identified. Finally, the relationships between a class of so-called finite
element in time integration operators [FETInO] and the multi-step
representations are established.

Time integral/integration operators for transient analysis
The primary motivation and objectives here are the theoretical ideas leading to
the development of a formally standardized family of time integral/integration
operators for the solution of transient field problems. In the Wp-family of time
integral/integration operators, p � 0; 1; 2; 3 . . . denote the various classes of
time operators resulting from the theoretical developments described
subsequently for transient field problems. We designate p � 0, namely,
W0 �W as integral operators in time, and the consequences systematically
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leading to p � 1; 2; 3; . . ., namely, Wp as time integration operators.
Subsequently, in later sections, further developments leading to multi-step time
operators and a class of finite element in time operators and their associations
are briefly described.

Theoretical basis: formal theory of formulation of algorithms, and
development/evolution
It is herein postulated that time discretized operators encompassing both time
integral and a wide class of time integration operators pertain to and emanate
from the same family, with the burden carried by a virtual field or weighted
time field specifically introduced for enacting the time discretization. The
subsequent developments are strictly enacted in a mathematically consistent
manner so as to first permit obtaining the adjoint operator associated with the
original semi-discretized system. Consequently, this serves as a prelude for the
classification of time discretized operators and therein permits the
characterization of computational algorithms for transient analysis as
described next.

Consider the semi-discretized form of the equation system obtained for linear
transient field problems (say in a finite element sense) following the usual space
discretization procedures:

C
_~T �K~T � ~F
~T 0� � � ~T0

�3�

Assuming an arbitrary virtual field or weighted time field, W t� �, for enacting
the time discretization process, the above semi-discretized equation system can
be cast into the form: Z tn�1

tn

WT C
_~T �K~T ÿ~F

� �
dt � 0 �4�

Following (Tamma et al., 1994; 1995, 1997; Chen et al., 1993; Mei et al., 1994) we
propose to first reduce in a mathematically consistent manner the above
equation system (4) so as to first yield the adjoint operator associated with the
original semi-discretized transient field system. This forms the theoretical
framework and basis for enabling the formal development of time integral
operators and subsequently bridging the relationship between integral and
integration time operators. Accordingly, for the above first-order system we
integrate by parts once the term containing the time derivative of the
temperature vector. Thus, we haveZ tn�1

tn

_WTCÿWTK
ÿ �

~Tdt �WTC~T jtn�1

tn
ÿ
Z tn�1

tn

WT~Fdt �5�

where we define:
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WAdj � _WTC ÿWTK �6�
At this juncture, the primary focus is on the fundamental theory leading to a
clear insight into the role of the weighted time fields. With the exception that
W and consequently WAdj is undefined, thus far, there are no approximations
introduced in formulating the reduced equivalent representative form
containing the adjoint operator associated with the original transient semi-
discretized system. The burden of weight carried by W originally introduced
to enact the time discretization process and now related to the adjoint operator,
WAdj, and the resulting consequences in the evolution of W encompass:

. the theoretical (exact) solution, namely WExact , which is a matrix
representation, is obtained by setting the adjoint operator equal to zero
with/without considerations involving the notion of introducing
transformation into modal basis (i.e. associating an eigen problem in the
development of the time discretized operator);

. approximations further enacted upon the theoretical form of WExact

leading to WApprox which, however, still preserves the matrix
representations; and

. further approximations (which can theoretically explain the underlying
reasons) leading to a degenerated representation of the exact form of the
theoretical weighted time fields as instead a vector ~W�t� or single
valued scalar function of time, W�t�, which do not preserve the original
matrix form.

The aforementioned choices thereby describe (based on the assumptions
invoked) the development of ``exact integral operators'', ``approximate integral
operators'', or a wide class of other ``integration operators'' for transient field
problems. Furthermore, these choices of the weighted time fields also
additionally impose specific conditions on the corresponding approximations
for the dependent field variable. As a consequence, both of the above govern
the characterization of time discretized operators and serve as a prelude
towards formally establishing discrete numerically assigned [DNA]
algorithmic markers to uniquely characterize a wide class of computational
algorithms.

Summarizing and following Tamma et al. (1997, 1998, 1999), the formal
theoretical developments and the evolution of time discretized operators
emanating from a generalized time weighted philosophy for enacting the time
discretization process is presented and the following is noteworthy. The
proposition of a mathematically consistent formulation of the semi-discretized
transient system in a time weighted sense which first leads to an equivalent
representation containing the adjoint operator associated with the original
semi-discretized transient system is shown to provide a basis for the general
classification of time discretized operators. The resulting Type 1, Type 2, and
Type 3 classifications pertain to time discretized operators, wherein, the burden
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is placed upon the choices for the weighted time fields and the above
classifications are indeed a direct consequence, all evolving from a theoretically
exact time weighted representation. In principle, a plausible theory of evolution
of time discretized operators is described for a wide class of computational
algorithms emanating from the exact solution and explained via a generalized
time weighted philosophy. Thus, following Tamma et al. (1998; 1999), Type 1
operators in time are cited to be a direct result of a mathematically consistent
choice of the weighted time fields which are theoretically exact, WExact , and
obtained by setting the adjoint operator equal to zero, thereby leading to those
termed as time integral operators. For this selection of the weighted time fields,
there is no need to impose conditions upon the dependent field variable and is
irrelevant as evident from the equivalent representation containing the adjoint
operator, equation (5). Type 2 operators are cited to be those time operators
resulting from introducing approximations to these exact weighted time fields
leading to WApprox, which however, still preserve the original matrix
representation of the theoretically exact weighted time fields. It is important to
note that in both Type 1 and Type 2 classifications, there is no need to impose
conditions on the corresponding approximations for the dependent field
variable and is irrelevant as discussed earlier. On the other hand, attempts
leading to a degenerated representation (in a theoretical sense) of the matrix
form of the theoretical weighted time fields leading to other forms of
approximation (such as a single valued scalar function of time) which do not
preserve the theoretical form are shown to be able to explain and lead instead to
the classification of Type 3 time operators such as the family of single-step
integration operators in time [SSInO] of which several of the widely advocated
and so-called time integration schemes are subsets of this family. Here, a
corresponding consistent approximation of the dependent field variable is
however important and must be invoked. As a consequence, the following
inferences can be postulated and/or further drawn:

. that there exists, emanating from a common family tree, and explained
via a generalized time weighted philosophy, a wide class of time
discretized operators all evolving from the theoretical (exact) solution
and termed here as the generalizations of a standardized family which
can be classified as Type 1, Type 2, and Type 3 time operators, and
uniquely characterized by discrete numerically assigned [DNA]
algorithmic markers which comprise of both the weighted time fields
and the corresponding conditions imposed on the approximations for
the dependent field variable;

. from the formal developments for ``exact integral operators'', the
resulting ``approximate integral operators'' and a wide class of time
``integration operators and known methods'' are simply subsets which
can be uniquely characterized; and

. different from the way we have been looking in the past at developments
encompassing modal type and a wide class of time stepping approaches,
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and significantly different from the way these have been developed and
described in standard text books over the years, all of these are indeed
associated, and emanate from the same family tree with common roots.

Development of time integral operators [IO]
Via a generalized time weighted philosophy for the development of time
discretized operators, we first consider the development of integral operators in
time. This can be accomplished both with and without considering the notion
of introducing transformation to modal basis (that is introducing modal
transformation and requiring an eigen problem to be associated in the
development of the time integral operators). And, the subsequent developments
are based on the unique selection of the weighted time fields as the theoretical
(exact) solution obtained by setting equal to zero the adjoint operator contained
in the equivalent representative form of the original semi-discretized transient
system.

In view of the above considerations, following Tamma et al. (1997), we may
consider the selection of W as either the solution of WAdj � _WTCÿWTK
� 0 or WAdj � _WTCÿWTK �WT���C��t ÿ �� where W��� � I, which
is the associated integration factor, or equivalently, the Greens function
respectively. A theoretically exact time integral operator may now be readily
derived for either of the above selections and with or without introducing the
notion of transformation to modal basis. Both the resulting representations
pertain to Type 1 classification of time operators where the resulting W are the
theoretical weighted time fields consistently obtained by setting the adjoint
operator, WAdj � 0 as described above (for details see Tamma et al., 1997).
That involving the notion of introducing transformation to modal basis leading
to such Type 1 time integral operators is briefly detailed next and subsequently
shown to systematically lead to the formal development of Type 3
classification of time integration operators and their characterization (which is
the focus of the present manuscript) via a degenerated form of representation of
the theoretical weighted time fields. The latter, namely, without involving the
notion of modal transformation but introducing approximations for the
weighted time fields which still preserves the original theoretical form is
recently described elsewhere (Tamma et al., 1999) leading to new attractive
algorithms as viable alternatives and termed as Type 2 classification of time
operators.

For the purposes of demonstrating the theoretical developments, focusing
attention on the notion of introducing transformation to modal basis following
Tamma et al. (1997), we have

~T � X~� �7�

and
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W � XW� �8�
where X � ~X1

~X2 . . . ~Xn

h i
denotes the matrix of eigenvectors and W� are

obtained as described subsequently.
Consider next the solution of the eigenproblem related to the transient field

problem based on the initial state at t � tn:

KX � CX
 �9�
where 
 � diag �1; �2; . . . ; �n� � is the matrix associated with the eigenvalues,
and X is the corresponding matrix of eigenvectors.

Introducing equation (8) into either selection of WAdj � 0 as described
earlier with the appropriate initial condition, results in the theoretically exact
matrix form of the weighted time fields (the latter option for WAdj � 0 is
shown here) as

W t� � � XW��
e
 tÿ�� �H t ÿ �� � �10�

where H t ÿ �� � is the Heaviside function, e
 � diag e�1 ; e�2 ; � � � ; e�n
� �

, and
W��

�W��t � �� and where we define

W� t� � �W��
e
 tÿ�� �H t ÿ �� � �11�

Introducing the modal transformations for ~T and W from equation (7) and
equation (8) into equation (5) and doing the algebra, results in the ``exact
integral operator'' in time which is the theoretical solution and is given as

~Tn�1 � Cÿ1XÿTeÿ
�tXTC~Tn �Cÿ1XÿTeÿ
�t

Z tn�1

tn

e
 tÿtn� �XT~Fdt �12�

The ``exact integral operator'' thus derived and its consequences leading to an
``approximate integral operator'' and termed as the VIrtual-Pulse (VIP) time
integral methodology is described in Tamma et al. (1997) and references
thereof. The ``approximate integral operator'' is constructed by making an
approximation to the forcing function,~F . For transient field problems, this first
leads to an explicit self-starting time integral methodology of computation
which naturally inherits excellent algorithmic stability, and certain attractive
computational and accuracy attributes. It is of n-th order accuracy for (n-1)th
order approximation of the load~F . The comparative stability characteristics of
the trapezoidal family are shown in Figure 1 and Table V with the explicit
second-order accurate approximate integral operator in time.

Nonlinear transient analysis
The approximate integral operator extended to a class of nonlinear transient

thermal analysis situations described by C�~T� _~T � f �~T� � ~F�t�, with the need
to compute the eigenproblem only once based on the initial state is briefly
highlighted next. For nonlinear situations, the approximate integral operator is
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however, explicit with iterations, and for linear situations, it readily reduces to
the linear time integral operator.

For nonlinear transient thermal analysis, representing

C ~T
� �

_~T �~f ~T
� �

� ~F ~T
� �

~T 0� � � ~T0

�13�

where~f �~T� � �Kc�~T� �Kh�~T� �Kr�~T��~T arises due to contributions from
conduction, convection, and radiation, and the load ~F comprises of the
corresponding contributions to the load vector to also include heat generation.
For the purpose of the theoretical development of the time integral operator,
considering (for illustration only)

C � CL �CNL �14�
and introducing the above into the semi-discretized system, we have at an
arbitrary time level, 
,

CL
_~T

 �~f 
 � ~F
 ÿC


NL ÿC

NL

_~T

 � ~R


eq �15�

We now invoke Z tn�1

tn

WT CL
_~T

 �~f 
 ÿ~R


eq

h i
d�� � 0 �16�

Figure 1.
Comparative stability/
accuracy characteristics
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and consistently integrate by parts the first time derivative term. Following
analogous procedures outlined earlier and selecting the virtual or weighted
time field as the solution of the following equation based on the initial state,

_WTCL ÿWTK0 �WT �� �CL� t ÿ �� � �17�
an explicit time integral methodology with iterations is obtained as described
by Tamma et al. (1994, 1995), Chen et al. (1993) and Mei et al. (1994). For linear
situations, it can be shown to reduce to either the exact or the approximate
integral operator based on the approximation introduced for the load. Figure 2
illustrates a typical linear/nonlinear transient thermal analysis application via
the explicit VIP time integral methodology. For given accuracy considerations,
of noteworthy mention is the naturally inherent stability advantage of the time
integral operator. The computational effectiveness depends upon the problem
at hand and the pros and cons are outlined in Tamma et al. (1997) and
references thereof.

In closure, the time integral or equivalently the modal based time operator
described in this section has been shown to be simply an outcome of a
generalized time weighted philosophy with the characterization that the
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weighted time fields are theoretically exact (W �WExact) and no conditions
need to be imposed on the dependent field variable, that is, consideration of the
temperature field approximation is irrelevant. In the next section, the formal
development of integration operators in time and their characterization are
presented and they emanate directly from approximations introduced in the
development of integral operators in time described in this section.

Formal development of time integration operators from time
integral operators
Development of single-step integration operators [SSInO]
Although an explicit time integral methodology of computation was outlined
earlier employing the theoretical weighted time fields for linear and a class of
nonlinear situations, some analysts may not wish to employ integral operators,
[IO]'s of Type 1 classification primarily because of the need and the expense of
solving the associated eigenproblem, and/or stem concerns for general
transient analysis applications. As such integration operators [InO]'s, have
been the selected choices. A plausible theory of evolution and the formal
development of such time integration operators, of Type 3 classification,
directly emanating from introducing approximations in the previous
development of time integral operators via a degenerated representation of the
matrix form of the theoretical weighted time fields which does not preserve the
theoretical form is briefly outlined next. Elsewhere, a detailed description of
Type 2 time operators are presented by Tamma et al. (1999).

In lieu of the existence of a variety of parameters present in the various
algorithms available in the literature and to minimize notational confusion
which deters lucid communication when referring to and relating the different
algorithms, a standardized formal ideology is described for further
characterizing a wide class of algorithms pertaining to the Type 3 classification.
As such, discrete numerically assigned [DNA] algorithmic markers serve well
to uniquely characterize algorithms. Additionally, a logical sequence of
evolution of single-step integration operators [SSInO] and consequences leading
to multi-step integration operators [MSInO], and a class of finite element in time
integration operators [FETInO] and their relationships are described.

The bridging of the relationships between integral operators in time
described previously to time integration operators follows next. From the
theoretical weighted time fields, the degenerated representation of the weighted
time field is formulated as follows. For the multi-degree of freedom transient
problem, merely for the purposes of the development of the theory, and to
provide a plausible explanation of how various polynomial forms of the
weighted time fields have evolved from the exact weighted time fields, consider
the theoretical approximation (in a mean sense) of all the system eigenvalues
and designated as �m given by:

�m � 1

n

Xn

i�1

�i �18�
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where �m is a theoretical quantity of the mean of all the system eigenvalues.
Employing this approximation in the theoretical weighted time field expression
described earlier results in

W t� � � e�m tÿ�� �H t ÿ �� � �19�
where � 2 tn; tn�1� �. Note that W(t) is now approximated instead as a single
valued scalar function of time which does not preserve the original matrix
representation of the theoretical weighted time fields, WExact . It is to be noted
that the result leading to equation (19) is simply a plausible theoretical
explanation from which various approximations for the weighted time field can
be shown to have evolved and no eigenvalues or eigen problem is really
computed. The implication is that it is this degenerated scalar form of the
weighted time field which can explain, for example, the reasons leading to the
consideration of a pth order asymptotic type series approximation for the
weighted time field in the subsequent development of time integration
operators of Type 3 classification. For illustration, consider now a thought
experiment by employing an asymptotic type series expansion for
W�t� � e�m�tÿ��H�t ÿ �� resulting in:

WAsymp t� � � w0 � w1
t ÿ �
�t

� �
� w2

t ÿ �
�t

� �2

� . . .� wp
t ÿ �
�t

� �p
" #

H t ÿ �� �

�20�
Setting � � tn, leads to:

WAsymp t� � � w0 � w1
t ÿ tn

�t

� �
� w2

t ÿ tn

�t

� �2

� . . .� wp
t ÿ tn

�t

� �p

�21�

Letting t ÿ tn = �� , and denoting ÿ � tÿtn
�t

, yields the generalized approximated
virtual or weighted time field for a wide class of integration operators:

WAsymp t� � � w0 � w1ÿ� w2ÿ
2 � . . .� wpÿ

p �22�

At this juncture, one cannot now disregard the corresponding approximation
imposed upon ~T as was the case with the selection of the theoretical virtual or
weighted time field which did not impose any conditions on the dependent field
variable since it was irrelevant. A consistent choice for ~T needs to be made as:

~TAsymp � ~Tn � �1
_~Tn� � �2

�~Tn�
2 � . . .� �p

~T�p��p �23�

for which (as a particular case) the Taylor series is given as

~TTaylor � ~Tn � _~Tn� � �~Tn
�2

2!
� . . .� ~T�p� �

p

p!
�24�
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Substituting the above approximations for WAsymp�t� and ~TTaylor into the time
weighted residual semi-discretized transient field problem, yields a generalized
family of single-step integration operators [SSInO]:Xp

q�1

�tqÿ1~T
�q�
n

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C�

Xp

q�0

�tq~T
�q�
n

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

�25�

As such, it is herein demonstrated that the above SSInO family of algorithms
are an outcome of a weighted time philosophy employing W�t� �WAsymp

(degenerated from WExact) with the imposed conditions for the dependent field
variable as ~T � ~TTaylor (issues concerning ~TAsymp are not discussed here).

Equation (25) allows the computation of ~T�p�when all the lower order
derivatives of the temperature and the distinct values of the coefficients of wi

are known. Once ~T�p� is found, the temperature vector at t � tn�1 is determined
from:

~Tn�1 � ~Tn � _~Tn�t � 1

2!
�~Tn�t2 � . . .� 1

p!
~T�p��tp �26�

In the above, there exist p unknowns and one equation, where
_~T0;

�~T0; � � � ; ~T0
�p�

are the unknowns.
_~T0 can be obtained from the semi-discretized system based

on the initial conditions. The p-th derivative ~T�p� can be obtained from equation

(25). For p > 2,
�~T0;

:::
~T; . . . ; ~T

�pÿ1�
0 need to be calculated. Based on accuracy

and/or efficiency considerations, one may utilize the differential equation
system or alternatives as described in Zienkiewicz and Taylor (1994) and
Tamma et al. (1997).

A generalized implementation procedure is outlined next for the Wp-family
of integral operators [IO] with p � 0, and the single-step integration operators
[SSInO] with p � 1; 2; 3; . . . ;.

Generalized implementation: Wp algorithms for transient analysis
Step 1. Evaluate the finite element C and K matrices.
Step 2. Select option for W: If exact or approximation integral operator,
evaluate:

WExact � diag e�1 �� ; e�2 �� ; . . . ; e�n ��
� �

Solve eigenproblem based on conditions at initial state t � tn:

KX � CX


Determine initial conditions in modal coordinates:
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~� 0� � � XTC~T 0� �
go to step 6, else select coefficients wi:

WAsymp � w0 � w1ÿ� w2ÿ
2 � . . .� wpÿ

p

Step 3. Assume a temperature field described by:

~TTaylor � ~Tn � _~Tn�� � � � � � 1

p!
~T�p���p

Step 4. If p > 1, compute
_~T0 from initial conditions.

Step 5. If p > 2, solve for
�~T0; ~T0; � � � ; ~T0

�pÿ1�. Based on accuracy and/or
efficiency considerations, perform evaluations as discussed previously.
Step 6. Enter time step loop. If exact or approximate integral operator: Compute
~F� � XT~F , form integral operator and solve explicitly:

~�n�1;i � Aamp
~�n;i �~L

goto step 9, else form the time operator, and solve for ~T�p�:Xp

q�1

�tqÿ1~T
�q�
n

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C�

Xp

q�0

�tq~T
�q�
n

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

Step 7. Obtain:

~Tn�1 � ~Tn � _~Tn�t � � � �
~T�p��tp

p!

Step 8. Update:

_~Tn�1 � _~Tn ��t
�~Tn � � � � � �tpÿ1

pÿ 1� �!
~T�p�

�~Tn�1 � �~Tn ��t
:::
~Tn � � � � � �tpÿ2

pÿ 1� �!
~T�p�

..

.

~T
�pÿ1�
n�1 � ~Tn

�pÿ1� ��t~T�p�

goto step 6 for the next time step.
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Step 9. Obtain:

~Tn�1 � X~�n�1

goto step 6 for the next time step.
Tables I-IV specifically identify the weighted time fields for a majority of the

Wp family of algorithms for first-order systems. For p � 1; 2; 3 and 4 and the
like, one can readily characterize transient algorithms via discrete numerically
assigned [DNA] markers for the coefficients of wi and the corresponding
approximation for the dependent field variable, thus leading to a variety of
algorithms as choices available to the analyst. The development of some of the

Table I.
Type 3-[DNA]
algorithmic markers for
W1 algorithms with
~TLinear

Algorithms Weighted time fields

Crank-Nicolson (1947) W � 1� 0ÿ � 1

Euler Forward W � 1ÿ 3
2 ÿ

Euler Backward W � 1ÿ 3ÿ

Liniger (1968) W � 1ÿ 17
4 ÿ

Galerkin (Zlamal, 1977) W � 1ÿ1ÿ

Table II.
Type 3-[DNA]
algorithmic markers for
W2 algorithms with
~TQuadratic

Algorithms Weighted time fields

Dupont et al. (1974) W � 1ÿ 19
3 ÿ� 20

3 ÿ2

Gear (1969) W � 1ÿ 36
5 ÿ� 8ÿ2

Lees (1966) W � 1ÿ 60
11 ÿ� 60

11 ÿ2

Liniger-1 (1969) W � 1� 146:182ÿÿ 279:091ÿ2

Liniger-2 (1969) W � 1ÿ 8:88424ÿ� 11:0961ÿ2

Zlamal (1977) W � 1ÿ 236
39 ÿ� 80

13 ÿ2

Table III.
Type 3-[DNA]
algorithmic markers for
W3 algorithms with
~TCubic

Algorithms Weighted time fields

Gear (1969) W � 1ÿ 615
46 ÿ� 825

23 ÿ2 ÿ 1155
46 ÿ3

Liniger (1969) W � 1ÿ 13:8673ÿ� 38:1061ÿ2 ÿ 27:1143ÿ3

Zlamal (1977) W � 1ÿ 16:8806ÿ� 49:5224ÿ2 ÿ 36:5672ÿ3

Table IV.
Type 3-[DNA]
algorithmic markers for
W4 algorithms with
~TQuartic

Algorithms Weighted time fields

Gear (1969) W � 1ÿ 6495
302 ÿ� 30765

302 ÿ2 ÿ 24850
151 ÿ3 � 12789

151 ÿ4
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[DNA]-algorithmic markers have been facilitated from results reported in
Zienkiewicz and Taylor (1994). These are summarized in Tables I to IV, where
ÿ � ��

�t
.

Development of multi-step integration operators [MSInO]
In the previous section, a Wp-family of Type 3 classification of single-step time
integration operators [SSInO] have been constructed for p � 1; 2; 3; � � �,
employing WAsymp�t� and ~TTaylor directly from the developments described for
Type 1 classification of time integral operators (p � 0) which employed the
theoretical weighted time fields, WExact and with no specific conditions
imposed for ~T as it is irrelevant. In the previous single-step algorithms, the
unknown value, ~Tn�1, of the time step tn�1 is related to the known values,
~Tn;

_~Tn; � � � ; ~T�p�n , of the time step tn. Instead of a single time interval tn to tn�1,
the same philosophy and consequences drawn in relation to multi-step
representations is described next now employing WAsymp and ~TLagrange

constructed over the multi-steps nÿ p� 1 to n� 1. Although in principle,
analogous related efforts are described in Zienkiewicz and Taylor (1994), the
present developments provide the underlying theoretical basis and further
insight into additionally explaining the multi-step time integration operators
within the context of the proposed overall framework. In general, the higher-

order derivatives at time step tn, namely,
_~Tn;

�~Tn; � � � ; ~T�p�n in SSInO can be
expressed in relation to Lagrange polynomial approximations in terms of
~Tnÿp�1; ~Tnÿp�2; � � � ; ~Tn�1. When these relations are substituted into the
temperature field approximation associated with the single-step
representations, and the dependent field variable is now constructed over p-
steps as ~TLagrange, then in conjunction with the degenerated weighted time field
approximation, WAsymp, the resulting representations will now yield the
corresponding multi-step forms. Thereby, showing that the single-step
integration operators [SSInO] described previously can be readily cast as and
are equivalent to the multi-step counterparts [MSInO] as presented next. Of
interest, however, are also the subtle issues as related to the accuracy of these
multi-step results in contrast to the single-step counterparts, and conditions
under which equivalence can be clearly explained.

Table V.
Comparative stability/

accuracy characteristics

Wp Family Type Stability Accuracy

VIP (p=0) Explicit Unconditional 2
Forward Euler (p=1) Explicit Conditional 1
Crank-Nicolson (p=1) Implicit Unconditional 2
Galerkin (p=1) Implicit Unconditional 1
Backward Euler (p=1) Implicit Unconditional 1
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General multi-step algorithms

Summarizing the procedures of the Wp family of single-step integration

operators, for the semi-discretized first order equation:

C
_~T �K~T � ~F �27�

with initial condition

~T 0� � � ~T0 �28�

we had derived a weighted time field (as an approximation resulting from the

theoretical weighted time field) of the form:

WAsymp ��� � � w0 � w1ÿ� � � � � wpÿ
p �29�

with the imposed conditions for the selection of ~T as a function between tn and

tn�1 as:

~TTaylor � ~Tn � _~Tn�� � �~Tn
��2

2!
� � � � � ~T�p�n

��p

p!
�30�

with �� 2 �0;�t�. Substituting WAsymp and ~TTaylor into the time weighted

residual semi-discretized transient problem yields the family of single-step

integration operators [SSInO] as:Xp

q�1

�tqÿ1~T
�q�
n

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C�

Xp

q�0

�tq~T
�q�
n

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

�31�

As described in the previous section, equation (31) represents the general

single-step family of time integration operators [SSInO]. Instead, following the

previous discussion, now consider constructing ~T over p-steps as a polynomial

in terms of ~Tnÿp�1; ~Tnÿp�2; � � � ; ~Tn�1. Thus,

~T � F ~Tn�1; ~Tn; � � � ; ~Tnÿp�1; ��
� �

�32�

In order to construct the above, we consider the approximation of the

derivatives _Tn; �Tn; � � � ;T�p�n via Lagrange interpolation functions following

Zienkiewicz and Taylor (1994), but then introduce these into the representation

for ~TTaylor given by equation (30). Hence we have upon employing
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_~Tn �
X1

i�ÿp�1

_Ni 0� �~Tn�i

�~Tn �
X1

i�ÿp�1

�Ni 0� �~Tn�i

..

.

~T�p�n �
X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

�33�

where, in general at �� we have

N
�p�
i ��� � �

X1

k�ÿp�1
k6�i

� � �
X1

l�ÿp�1
l 6�k

..

.

l 6�i

Q1
m�ÿp�1

m6�k
m6�i

..

.

m6�l

�� ÿm�t� �

Q1
k�ÿp�1

k 6�i

i ÿ k� ��t

The temperature field ~TTaylor is now approximated as

~TTaylor �~Tn � ��
X1

i�ÿp�1

_Ni 0� �~Tn�i � 1

2!
��2

X1

n�ÿp�1

�Ni 0� �~Tn�i

� � � � � 1

p!
��p
X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

�34�

Re-arranging equation (34), yields:

~TTaylor �
X1

i�ÿp�1

Ni ��� �~Tn�i

�
X1

i�ÿp�1

Y1

k�ÿp�1
k6�i

�� ÿ k�t

�i ÿ k��t
~Tn�i

� F ~Tn�1; ~Tn; � � � ; ~Tnÿp�1; ��
� �

�35�

Finally,
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~TTaylor � ~Tn � ��
_~Tn � 1

2!
��2 �~Tn � � � � � 1

p!
��p~T�p�n

�
X1

i�ÿp�1

Y1

k�ÿp�1
k6�i

�� ÿ k�t

�i ÿ k��t
~Tn�i � ~TLagrange

�36�

implying that both ~TTaylor and ~TLagrange are approximated to pth order; however

~TTaylor 6� ~TLagrange. In a similar manner, we have the higher order derivative

approximations as:

_~TTaylor � _~Tn � ��
�~Tn � � � � � 1

�pÿ 1�! ��pÿ1~T�p�n

�
X1

i�ÿp�1

_Ni 0� �~Tn�i � ��
X1

i�ÿp�1

�Ni 0� �~Tn�i

� � � � � 1

�pÿ 1�! ��pÿ1
X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

�
X1

i�ÿp�1

_Ni ��� �~Tn�i � _~TLagrange

�37�

with the other derivatives given by

�~TTaylor � �~Tn � ��
:::
~Tn � � � � � 1

�pÿ 2�! ��pÿ2~T�p�n

�
X1

i�ÿp�1

�Ni 0� �~Tn�i � ��
X1

i�ÿp�1

:::
Ni 0� �~Tn�i � � � � � 1

�pÿ 2�! ��pÿ2

X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

�
X1

i�ÿp�1

�Ni ��� �~Tn�i

..

.
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~T
�pÿ1�
Taylor � ~T�pÿ1�

n � ��~T�p�

�
X1

i�ÿp�1

N
�pÿ1�
i 0� �~Tn�i � ��

X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

�
X1

i�ÿp�1

N
�pÿ1�
i ��� �~Tn�i

�38�

Employing the Lagrange approximations associated with the dependent field
variable in equation (36) and (37) along with the same degenerated weighted
time field, WAsymp, into the time weighted residual semi-discretized transient
problem, we now have the resulting multi-step integration operators [MSInO]
as: Z �t

0

W ��� �

C
X1

i�ÿp�1

_Ni ��� �~Tn�i �K
X1

i�ÿp�1

Ni ��� �~Tn�i ÿ
X1

i�ÿp�1

Ni ��� �fn�i

" #
d�� � 0

�39�

or Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tj _Ni ��� �~Tn�id��

" #
C

�
Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tjNi ��� �~Tn�id��

" #
K

ÿ
Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tjNi ��� �fn�id�� � 0

�40�

or Xp

q�1

�tqÿ1
P1

j�ÿp�1 Nq
j
~Tn�j

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C

�
Xp

q�0

�tqÿ1
P1

j�ÿp�1 Nq
j
~Tn�j

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

�41�
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Next the underlying subtle issues contrasting SSInO and the MSInO and the

conditions under which equivalence can be demonstrated are explained. The

resulting multi-step representations, namely, [MSInO], in principle can be

solved in two ways. The first approach follows the implementation steps of

[SSInO], and solving the corresponding higher-order derivative quantityP1
i�ÿp�1 N

�p�
i �0�~Tn�i � ~T

�p�
n

� �
employing equation (41). It should be noted

that in the first approach ~Tn�1 is not directly solved from equation (41). The

corresponding implementation steps are as follows:

Step 1. Evaluate the finite element C and K matrices.

Step 2. Select coefficients wi 's for the weighted time field, WAsymp:

WAsymp � w0 � wiÿ� w2ÿ
2 � � � � � wpÿ

p

Step 3. Assume the temperature field described by:

~TLagrange �
X1

i�ÿp�1

Ni ��� �~Tn�i

where Ni are the Lagrange interpolation functions:

Ni �
Y1

k�ÿp�1
k6�i

�� ÿ k�t

i ÿ k� ��t

Step 4. Compute
_~T0;

�~T0; � � � ; ~T�p�0 from initial conditions by using:

C~Ti
0 � ~Fiÿ1

0 ÿK~Tiÿ1
0

Step 5. Solve initial back steps ~Tÿp�1; ~Tÿp�2; � � � ; ~Tÿ1, from:

_~T0 �
X1

i�ÿp�1

_Ni 0� �~Ti

�~T0 �
X1

i�ÿp�1

�Ni 0� �~Ti

..

.

~T
�p�
0 �

X1

i�ÿp�1

N
�p�
i 0� �~Ti

Step 6. Enter time step loop. Solve for the quantity
P1

i�ÿp�1 N �p� 0� � ~Tn�i from:
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Xp

q�1

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C

�
Xp

q�0

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

Step 7. Obtain:

~Tn�1 �
X1

i�ÿp�1

Ni 0� �~Tn�i ��t
X1

i�ÿp�1

_Ni 0� �~Tn�i � � � � ��tp

p!X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

Step 8. Update:X1

i�ÿp�1

_Ni 0� �~Tn�1�i �
X1

i�ÿp�1

_Ni 0� �~Tn�i ��t
X1

i�ÿp�1

�Ni 0� �~Tn�i

� � � � ��tp

p!

X1

i�ÿP�1

N
�p�
i 0� �~Tn�i

..

.

X1

i�ÿp�1

N
�pÿ1�
i 0� �~Tn�1�i �

X1

i�ÿp�1

N
�pÿ1�
i 0� �~Tn�i ��t

X1

i�ÿp�1

N
�p�
i 0� �~Tn�i

Step 9. Re-do the time step loop for next time step.
In [SSInO], the temperature field was approximated as a pth order

approximation of the Taylor series expansion, while it is approximated as
Lagrange interpolation functions also up to pth order in [MSInO]. In the
previous [MSInO] implementation procedure, the higher order derivatives,
_~Tn;

�~Tn; � � � ; ~T�p�n correspond to
P1

i�ÿp�1
_Ni�0�~Tn�i;

P1
i�ÿp�1

�Ni�0�~Tn�i; � � � ;P1
i�ÿp�1 N

�p�
i �0�~Tn�i, as shown in equation (33). By choosing the same

weighted time fields for [SSInO] and MSInO], namely, WAsymp, this
implementation procedure forces the two assumed temperature fields to be the
same, which means that the implementation procedure enforces

P1
i�ÿp�1 N

�j�
i

~Tn�i � ~T
�j�
n , where j � 1; 2; � � � ; p, and hence the resulting solutions in [SSInO]

and [MSInO] are identical. Hence, with the same weighted time field, the
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resulting multi-step representations, equation (41), inherit the same stability,
convergence properties and numerical solution as the corresponding single-
step representations, equation (31), since essentially there is no difference in
that the same quantities are being identically computed (note that the initial
conditions are also set to be the same).

Alternatively, in the multi-step integration operators, equation (41), there
exists only the unknown term ~Tn�1. In this case, ~Tn�1 can be also directly
solved from equation (41), instead of solving for the quantity

P1
i�ÿp�1 N

�p�
i
~Tn�i

as in the previous approach. The alternative implementation procedural steps
are described next:

Step 1. Evaluate the finite element C and K matrices.
Step 2. Select coefficients wi 's for weighted time field, WAsymp:

WAsymp � w0 � wiÿ� w2ÿ
2 � � � � � wpÿ

p

Step 3. Assume the temperature field described by:

~TLagrange �
X1

i�ÿp�1

Ni ��� �~Tn�i

where Ni are Lagrange interpolation functions:

Ni �
Y1

k�ÿp�1
k6�i

�� ÿ k�t

i ÿ k� ��t

Step 4. Compute
_~T0;

�~T0; � � � ; ~T�p�0 from initial conditions by using:

C~T
�i�
0 � ~F�iÿ1�

0 ÿK~T
�iÿ1�
0

Step 5. Solve initial back steps ~Tÿp�1; ~Tÿp�2; � � � ; ~Tÿ1, from:

_~T0 �
X1

i�ÿp�1

_Ni 0� �~Ti

�~T0 �
X1

i�ÿp�1

�Ni 0� �~Ti

. . .

~T
�p�
0 �

X1

i�ÿp�1

N
�p�
i 0� �~Ti
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Step 6. Enter time step loop. Solve for the term ~Tn�1 from:Xp

q�1

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C

�
Xp

q�0

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

Step 7. Re-do the time step loop for next time step.
As described previously, the assumed temperature field, which is a function

of the Lagrange interpolation functions over ~Tÿp�1; ~Tÿp�2; � � � ; ~T1, namely,
~TLagrange is different from the assumed temperature field ~TTaylor of the Taylor
series expansion in [SSInO]. This causes the computed quantity, ~Tn�1 to be
different in both if the same weighted time field, WAsymp is employed. An in-
depth explanation of this and other issues and conditions under which they are
equivalent follows. In the above procedure, the temperature field is assumed as
p-th order, such that the higher-order derivative terms, namely,P1

i�ÿp�1
_Ni
~Tn�i;

P1
i�ÿp�1

�Ni
~Tn�i; � � � ;

P1
i�ÿp�1 N

�p�
i
~Tn�i , are only accurate up

to p-th order. In [SSInO], the higher-order derivative terms,
_~Tn;

�~Tn; � � � ; ~T�p�n are
computed from the system of equations analogous to (26), hence they are
considered as ``exact'' higher-order derivatives. These differences will cause the
family of [MSInO] algorithms as different algorithms from the corresponding
family of [SSInO] algorithms by choosing the same weighting field, WAsymp. As
such, the following is noteworthy.

Wood (1990) and Zienkiewicz and Taylor (1994) discuss adjusting the
weighted time fields to obtain the equivalent algorithms for the single-step and
multi-step representations. This is explained here by defining:

Wp;j �
Z �t

0

W �� jd�� �
Xp

i�0

wi�tj�1

1� i � j
�42�

such that Wj _� Wp;j

�tjWp;0
(is now equivalent to the parameters �j which are defined

by Zienkiewicz and Taylor, 1994) and j � 1; 2; � � � ; p. Since the time integrators
pertaining to SSInO yield different numerical results in contrast to that
obtained by MSInO (as ~TTaylor 6� ~TLagrange) for the same weighted time field,
WAsymp, adjusting the weighted time fields in the development of MSInO
following the relations shown next will now yield the same numerical results
for the same ~TLagrange.
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Wj�SSInO� �
j!
R�t

0 N
�pÿj�
1 � ��

�t
�WAdjustd��R�t

0 WAdjustd��
�43�

This resulting formulation will thus permit equivalent single-step
representations. In summary, employing WAsymp and ~TLagrange leading to
[MSInO] in contrast to employing WAsymp and ~TTaylor leading to [SSInO],
obviously causes the two solutions to be different since ~TLagrange 6� ~TTaylor .
Alternatively, adjusting the weighted time field to WAdjust and employing the
same ~TLagrange now leads to the same numerical solutions for the time
integrators [MSInO] and [SSInO].

Finite element in time integration operators [FETInO]
The original postulation for a class of finite element in time methods is the
application of the finite element philosophy for the time discretization of the
semi-discretized parabolic equation (although finite element methods were
originally developed for the space discretization). The semi-discretized
equation of interest here is

C
_~T �K~T � ~F �44�

with initial condition

~T 0� � � ~T0 �45�

In contrast to the previous developments which employed WAsymp and ~TLagrange

leading to [MSInO], we next describe the formal development of a class of finite
element in time operators [FETInO] employing instead the weighted time field
as a vector containing Lagrange interpolation functions, ~WLagrange, and the
same dependent field approximation, ~TLagrange. Subsequently, simply to
demonstrate equivalence to the multi-step representations, we relax the
conditions associated with ~WLagrange in the weak form.

We discretize the time domain with uniform �t increment. For the element
containing ~Tnÿp�1, ~Tnÿp�2, � � �, ~Tn�1, the polynomial approximation for ~T can
be constructed by the Lagrange interpolation functions as:

~T �
h
Nÿp�1 Nÿp�2 � � � N1

i ~Tnÿp�1

~Tnÿp�2

..

.

~Tn�1

0BBB@
1CCCA �46�

where
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Ni �
Y1

k�ÿp�1
k6�i

�� ÿ k�t

�i ÿ k��t
�47�

Next choosing the weighted time field as a vector containing the same
interpolation functions, we have

~WT
Lagrange;BG �

h
Nÿp�1 Nÿp�2 � � � N1

i
�48�

Substitute (46) and (48) into the time weighted residual of the semi-discretized
equation leading to:Z �t

0

~WT
Lagrange;BG C

_~T �K~T ÿ~F
h i

d�� � 0 �49�

where

_~T �
h

_Nÿp�1
_Nÿp�2 � � � _N1

i ~Tnÿp�1

~Tnÿp�2

..

.

~Tn�1

0BBB@
1CCCA �50�

Equation (49) can be termed as and lead to the classical finite element in time
Bubnov-Galerkin type formulation. Unfortunately, such a representation does
not provide a general methodology for development of solution algorithms. As
such, consider a generalized Petrov-Galerkin representation for the weighted
time field as:

~WT
Lagrange;PG �

h
Nÿp�1aÿp�1 Nÿp�2aÿp�2 � � � N1a1

i
�51�

where ai are the scalar values for the free parameters. Equation (49) can be now
represented as Z �t

0

~WT
Lagrange;PG C

_~T �K~T ÿ~F
h i

d�� � 0 �52�

Expanding (52) yields
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Z �t

0

Nÿp�1aÿp�1 C
_~T �K~T ÿ~F

h i
d�� � 0Z �t

0

Nÿp�2aÿp�2 C
_~T �K~T ÿ~F

h i
d�� � 0

..

.Z �t

0

N1a1 C
_~T �K~T ÿ~F

h i
d�� � 0

�53�

or, in matrix form we have the representation for the generalized form of a class

of finite element in time operators given by

B11 B12 � � � B1p

B21 B22 � � � B2p

..

. ..
. ..

. ..
.

Bp1 Bp2 � � � Bpp

26664
37775

~Tÿp�1

~Tÿp�2

..

.

~T1

0BBB@
1CCCA �

~F�ÿp�1

~F�ÿp�2

..

.

~F�1

0BBBB@
1CCCCA �54�

where

Bij �
Z �t

0

Njaj C _Ni �KNi

� �
d��

~F�j �

R�t

0 Njfÿp�1;jd��R�t

0 Njfÿp�2;jd��

..

.R�t

0 Njf1;jd��

0BBBB@
1CCCCA

i; j 2 ÿp� 1;ÿp� 2; � � � ; 1

In the remainder of this section, for illustration, the relationships emanating

from the finite element in time philosophy to the equivalent multi-step

algorithms is described. Consider further relaxing the weak form by summing

the representations given in (53) as follows:Z �t

0

X1

ÿp�1

Niai

 !
C

_~T �K~T ÿ~F
h i

d�� � 0 �55�

As such, since we now have
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WPG �
X1

ÿp�1

Niai

� w0 � w1
��

�t

� �
� � � � � wp

��

�t

� �p

�W ��� �

�56�

where wj's are function of ai's, and

~T �
h
Nÿp�1 Nÿp�2 � � � N1

i ~Tnÿp�1

~Tnÿp�2

..

.

~Tn�1

0BBBBB@

1CCCCCA
�

X1

i�ÿp�1

Ni ��� �~Tn�i

�
X1

i�ÿp�1

Y1

k�ÿp�1
k 6�i

�� ÿ k�t

�i ÿ k��t
~Tn�i

�57�

the relaxed weak form of representation, equation (55) becomesZ �t

0

W ��� �

C
X1

i�ÿp�1

_Ni ��� �~Tn�i �K
X1

i�ÿp�1

Ni ��� �~Tn�i ÿ
X1

i�ÿp�1

Ni ��� �fn�i

" #
d�� � 0

�58�

or Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tj _Ni ��� �~Tn�id��

" #
C

�
Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tjNi ��� �~Tn�id��

" #
K

ÿ
Xpÿ1

j�0

X1

i�ÿp�1

Z �t

0

wj�tjNi ��� �fn�id�� � 0

�59�

or
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Xp

q�1

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

qÿ 1� �!
Xp

i�0

wi�ti

q� i � 1

" #
C

�
Xp

q�0

�tqÿ1
P1

j�ÿp�1 N
�q�
j
~Tn�j

q!

Xp

i�0

wi�ti

q� i

" #
K

ÿ
Xp

q�0

Z �t

0

wq��q~Fnd�� � 0

�60�

Equation (60) which is a consequence of a class of finite element in time
operators [FETInO] has the same representation as the multi-step
representations [MSInO] given by equation (41), and is identical. In summary, a
class of finite element in time operators were described within the framework of
the present developments and are subsequently shown to have equivalence to
the multi-step, or consequently the equivalent single-step approaches.

Concluding remarks
A formal theory of development/evolution with particular attention to
characterization of a wide class of transient algorithms for heat transfer
computations was described. Subsequently, an overview of recent
developments describing the theoretical basis and the resulting consequences
towards formalizing the fundamental concepts leading to a clear understanding
of integral operators, a variety of single-step integration operators, multi-step
integration operators, and a class of finite element in time integration operators
was presented. Unlike previous efforts, although the developments emanate
from a time weighted philosophy, the overall theoretical framework is based on
new and different theoretical perspectives. Consequently, it therein serves as a
prelude towards a clear understanding and an improved insight and provides a
formal theory of development, evolution and characterization of time
discretization operators. The formal relationships and equivalences amongst
the various time operators was established. Different from the way the
development of time discretized operators encompassing integral/integration
operators have been described in traditional text books and in the research
literature, the present developments provide a rich understanding of the
theoretical basis and the fundamental principles. Finally, the discrete
numerically assigned [DNA] algorithmic markers which comprise of both the
weighted time fields and the conditions imposed upon the dependent field
variable approximation serve well to uniquely characterize a wide class of time
discretized operators. As such, in order to provide a standardized formal
ideology when referring to and/or relating different algorithms to permit lucid
communication, one may simply describe these in relation to the algorithmic
DNA markers. A generalized implementation procedure for transient analysis
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was outlined to permit a single analysis code to incorporate a variety of
features.

References

Argyris, J.H. and Scharpf, D.W. (1969), ``Finite elements in time and space'', The Aeronautical
Journal of the Royal Aeronautical Society, Vol. 73, p. 1041.

Bathe, K.J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood
Cliffs, NJ.

Belytschko, T. and Hughes, T.J.R. (1983), Computational Methods in Transient Analysis, North
Holland.

Chen, X., Tamma, K.K. and Sha, D. (1993), ``A new virtual-pulse time integral methodology for
linear transient heat transfer problems'', Numerical Heat Transfer, Part B ±
Fundamentals, Vol. 24, p. 301.

Crank, J. and Nicolson, P. (1947), ``A practical method for the numerical evaluation of solutions of
partial differential equations of the heat conduction type'', Proc. Combridge Phil. Soc.,
Vol. 43, p. 50.

Dupont, T., Fairweather, G. and Johnson, P. (1974), ``Three-level Galerkin methods for parabolic
equations'', SIAMJ, Vol. 11, p. 392.

Fried, I. (1969), ``Finite element analysis of time-dependent phenomena'', AIAA J, Vol. 7, p. 1170.

Gear, C.W. (1969), ``The automatic integration of stiff ordinary differential equations'', in Morrell,
A.J.H. (Ed.), Information Processing, Vol. 68, North Holland, Dordrecht, p. 187.

Gurtin, M. (1964), ``Variational principles for linear initial-value problems'', Q. Appl. Math,
Vol. 22, p. 252.

Lees, H. (1966), ``A linear three-level differences scheme for quasilinear parabolic equations'',
Mech. Comp., Vol. 20, p. 516.

Liniger, W. (1968), ``Optimization of a numerical integration method for stiff systems of ordinary
differential equations'', IBM Research Report, No. RC2198.

Liniger, W. (1969), ``Global accuracy stability of one and two step integration formulae for stiff
ordinary differential equation'', Conf. Numerical Solution of Differential Equations,
Dundee University.

Manolis, G.D. and Beskos, D.E. (1980), ``Thermally induced vibrations of beam structures'',
Computer Methods in Applied Mechanics and Engineering, Vol. 21 No. 337.

Mei, Y., Mohan, R.V. and Tamma, K.K. (1994), ``Evaluation and applicability of a new explicit
time integral methodology for transient thermal problems ± finite volume formulations'',
Numerical Heat Transfer, Vol. 6 No. 3, p. 313.

Oden J.T. (1969), ``A general theory of finite elements, part II'', International Journal for
Numerical Methods in Engineering, Vol. 1, p. 247.

Tamma, K.K. and Railkar, S.B. (1987a), ``A generalized hybrid transfinite element computational
approach for nonlinear/linear unified thermal/structural analysis'', Computers and
Structures, Vol. 26, p. 655.

Tamma, K.K. and Railkar, S.B. (1987b), ``Nonlinear/linear unified thermal stress formulations:
transfinite element approach'', Comp. Meths. Appl. Mech. Eng., Vol. 64, p. 415.

Tamma, K.K., Chen, X. and Sha, D. (1994), ``Further developments towards a new virtual-pulse
time integral methodology for general non-linear transient thermal analysis'',
Communications in Applied Numerical Methods in Engineering, Vol. 10, p. 961.

Tamma, K.K., Mei, Y., Chen, X. and Sha, D. (1995), ``Recent advances towards an effective virtual-
pulse (VIP) explicit time integral methodology for multidimensional thermal analysis'',
International Journal of Numerical Methods in Fluids, Vol. 20, p. 523.



HFF
9,3

380

Tamma, K.K., Zhou, X. and Sha, D. (1998), ``On a plausible standardized and formal theory of
development/evolution of a wide class of computational structural dynamics algorithms'',
in AIAA SDM Conf., AIAA-98-2016, Long Beach, CA.

Tamma, K.K., Zhou, X. and Sha, D. (1999), ``Transient algorithms for heat transfer: general
developments and approaches for generating Nth-order time accurate operators including
practically usefull second-order forms'', International Journal for Numerical Methods in
Engineering Vol. 44, p. 1545..

Tamma, K.K., Zhou, X. and Valasutean, R. (1997), ``Computational algorithms for transient
analysis: the burden of weight and consequences towards formalizing discrete numerically
assigned (DNA) algorithmic markers: Wp-family'', Computer Methods in Applied
Mechanics and Engineering, Vol. 149, p. 153.

Washizu, K. (1975), Variational Methods in Elasticity and Plasticity, 2nd ed., Pergamon Press,
Oxford.

Wood, W.L. (1987), Numerical Methods for Transient and Coupled Problems, Chapter 8, John
Wiley and Sons Ltd, p. 149.

Wood, W.L. (1990), Practical Time Stepping Schemes, Clarendon Press, Oxford.

Zienkiewicz, O.C. and Taylor, R.L. (1994), The Finite Element Method, Vol. 1, McGraw-Hill, New
York, NY.

Zlamal, M. (1977), Finite Elements Methods in Heat Condution Problems, Academic Press, New
York, NY.


